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ScienceDirect
Recent advances in ancient DNA extraction and high-

throughput sequencing technologies enabled the high-quality

sequencing of archaic genomes, including the Neanderthal and

the Denisovan. While comparisons with modern humans

revealed both archaic-specific and human-specific sequence

changes, in the absence of gene expression information,

understanding the functional implications of such genetic

variations remains a major challenge. To study gene regulation

in archaic humans, epigenetic research comes to our aid. DNA

methylation, which is highly correlated with transcription, can

be directly measured in modern samples, as well as

reconstructed in ancient samples. This puts DNA methylation

as a natural basis for comparative epigenetics between modern

humans, archaic humans and nonhuman primates.
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Introduction
The emergence of high-quality genomes of archaic

humans (Neanderthals and Denisovans) [1–3] opened

up the opportunity to look for the genetic underpinning

of traits that separate anatomically modern humans

(AMHs) from archaic ones [4]. Many such traits are

believed to result from changes in gene regulation

[5,6], hence the identification of differentially regulated

genes across human groups has become a major avenue of

research. Direct access to RNA molecules in ancient

specimens is typically unattainable due to the relatively
www.sciencedirect.com 
short half time of RNA, although ancient RNA has been

successfully retrieved from relatively young plant seeds

[7] and from exceptionally preserved permafrost speci-

mens, including wolf skins and a 14 300-year-old canid

liver [8]. Regardless, RNA from archaic humans has yet to

be sequenced, triggering the use of indirect methods to

obtain information on their transcriptome.

One strategy is identifying DNA sequence changes in

known regulatory elements. Following the high-coverage

DNA from the Altai Neanderthal, almost 15 000 genetic

variants that separate archaic from modern humans have

been suggested to potentially affect regulatory elements

[2]. Twenty-five of those were experimentally tested in

neurons, and roughly half exerted expression changes [9].

Another approach relies on the fact that �2% of the

genomes of present-day non-African individuals is intro-

gressed from Neanderthals, and that the introgressed

regions vary across individuals. Consequently, each intro-

gressed sequence is present in some individuals but absent

in others, providing an opportunity to compare the regula-

tory differences of the Neanderthal and AMH variants.

Using 450 individuals for which both genotype and expres-

sion data were measured in 48 tissues, introgressed

sequences were reported to be enriched in regulatory

variants but not in non-synonymous variants, suggesting

that their function is mostly conveyed through their effect

on gene regulation. These functions are potentially related

to adipose tissues, body mass index (BMI), immunity and

neurology [10]. Measuring allele-specific expression in

214 introgressed individuals across 52 tissues suggested

cis-regulatory effects of roughly one-quarter of the intro-

gressed regions, as well as downregulation in brain and

testes [11]. Examination of archaic SNP frequencies in

promoters, enhancers and micro-RNA binding sites

across 127 tissues of introgressed individuals from the

1000 genome project, revealed that Neanderthal variants

tend to affect enhancers much more than other elements.

Particularly strong enrichment of Neanderthal variants was

found in adipose-related tissues and primary T cells [12].

Using a statistical method to impute the cis-regulatory
component of gene expression, more than 750 genes that

are not present in introgressed sequences were reported to

likely harbor different cis-regulation in Neanderthals and

AMHs [13��].

Despite the many insights obtained by these analyses,

they are restricted by our limited ability to predict how

sequence changes affect gene regulation. Therefore, a

second strategy to obtain indirect information on gene
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regulation is to study epigenetic differences between the

human groups. This review will focus on this strategy. We

will explain how epigenetics can be studied in ancient

genomes, and what new insights could be gained.

Evolution of gene regulation through the lens
of epigenetics
Epigenetics is a term that describes a set of regulatory

layers that can be modified without altering the DNA

sequence and that result in heritable changes in gene

expression. Well-known epigenetic marks include DNA

methylation, histone modifications, nucleosome positions

and 3D DNA packaging. Different epigenetic marks are

highly co-regulated, and bear ample information on gene

expression patterns [14,15].
Box 1 Regulation of gene expression by DNA methylation.

Methylation changes in gene promotors alter the binding affinity of differe
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Two epigenetic marks are currently known to retain

information in ancient DNA sequences. Nucleosomes

tend to be depleted in active regulatory regions, hence

their position bears information on such elements [16�]. It

has been shown that nucleosome positions along the

DNA can be inferred based on patterns of DNA fragmen-

tation. Breaks tend to occur between nucleosomes and

not within them, possibly because nucleosomes survive

long enough to shield their DNA from damage [17,18].

However, not all ancient samples are suitable for nucleo-

some fragmentation analysis, and difficulties in recon-

structing nucleosome positions are expected in highly

fragmented samples.

A richer source of information can be obtained from

DNA methylation maps. CpG methylation, especially
nt transcription factors, regulating their function.
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in CpG-dense regions called CpG islands (CGIs), which

are mostly found in promoters and enhancers, strongly

modulate gene expression [19] (Box 1). Changes in DNA

methylation levels are thought to affect gene expression

by modulating the affinity of methylation-sensitive DNA

binding proteins [20], thus preventing or promoting the

action of transcriptional activators and repressors. DNA

methylation also regulates the binding of chromatin

structural proteins. Among the most prominent of them

is CTCF [21–23], which, together with Cohesin and

Condensin, shapes the 3D organization of the genome

by promoting DNA loop formation and bringing distal

regulatory elements to the vicinity of their target genes.

The remaining of this review will describe insights that

have been obtained from studying the evolution of

DNA methylation in humans, including its implications

on the evolution of gene regulation across tissues and

species. We will make a distinction between two time

scales. First, we will examine comparisons between

modern humans and other extant primates, which high-

light regulatory changes that shaped the human lineage

since we split from chimpanzees and bonobos. Second,

we will show how DNA methylation was studied in

ancient samples, and examine comparisons between

modern and archaic humans, which highlight regulatory

changes that discriminate between the different human

groups.

Comparing DNA methylation between humans
and other primates
Comparative studies of DNA methylation try to charac-

terize how DNA methylation varies between and across

primate species, and how differential methylation is

related to differential gene expression. First attempts

measured the DNA methylation of selected genes

(e.g., [24,25]), but here we will mainly look at studies

that measured genome-wide DNA methylation maps.

Whereas the different studies vary in factors like the

technique used to measure DNA methylation, the num-

ber of measured CpG sites, the compared species, and the

tissues used, several general conclusions have been

drawn.

Similar to what has been observed for RNA expression,

genome-wide DNA methylation patterns cluster first by

tissue and then by species [26–28]. Tissue-specific dif-

ferentially methylated regions (DMRs) tend to be asso-

ciated with developmental genes, and to be conserved

between species. Genes associated with tissue-specific

DMRs that are conserved across species are enriched with

regulatory functions related to the same tissue, and

depleted with primary metabolism functions [26,27�].
Combined, these results highlight the highly conserved

role of DNA methylation in determining cell-type

identity during development.
www.sciencedirect.com 
For the same tissue, distances between DMA methyla-

tion patterns across species replicate the known primate

phylogeny [29,30]. Generally, the correlation between the

DNA methylation patterns of different species in the

same tissue is high, and just slightly less than the correla-

tion between same-tissue patterns in different individuals

from the same species. For example, the correlation

between human and chimpanzee sperm DMA methyla-

tion is 0.86�0.88, whereas it is 0.89 and 0.91 within

human and chimpanzee, respectively [31]. Roughly 9%

of CpG position are differentially methylated between

species [26,29], and they tend to reside in CpG shores and

regions outside of CGIs [29,30], which is not surprising

given that hypomethylation of CGIs tend to be conserved

even between species as remote as humans and zebrafish

[32]. Human-specific DMRs tend to be hypomethylated

in blood [30] and brain [33,34�], and to be enriched within

promoters and gene bodies of genes related to neurologi-

cal and developmental functions, including the develop-

ment of the nervous system, higher cognitive functions,

and embryonic morphogenesis [29,34�,35,36]. Moreover,

these genes are enriched with a range of diseases includ-

ing cancer and neurological disorders such as autism and

cognitive impairment [29,33,34�,37]. However, these

trends might not be general, as a recent study suggested

that more than 95% of human-chimpanzee differentially

methylated regions in glia cells are hypermethylated in

human [28]. Comparative analysis of DNA methylation in

femora revealed that species-specific DMRs are enriched

in several gene categories, including those involved in

limb development and skeletal system development,

potentially contributing to differential phenotypes [37].

Overall, these studies establish the links between differ-

ential DNA methylation, differential gene expression,

and phenotypic variation. It is estimated that 11%–25%

of human-chimpanzee differentially expressed genes are

affected by changes in promoter methylation, which

explain 12%–18% of the differences in expression levels

[26,27�].

Comparing DNA methylation between modern
and archaic humans
DNA methylation is a stable chemical modification, and

was shown to be present in ancient DNA even after tens

of thousands of years, suggesting the feasibility of acces-

sing DNA methylation patterns in ancient specimens,

and thus obtaining information on patterns of gene

expression in these specimens.

Direct measurement of ancient DNA methylation levels

was demonstrated to be impeded by technical obstacles

that arise due to the damage — mostly fragmentation and

deamination — inflicted on the ancient DNA molecules

[38–40]. Therefore, DNA methylation was directly mea-

sured using bisulfite conversion in only a small number of

ancient samples, including a 26 000 year-old bison [41],

and 30 native Americans (230–4500 years BP) [42]. DNA
Current Opinion in Genetics & Development 2020, 62:23–29



26 Genetics of human origin
methylation can also be measured using methyl-binding-

domains enrichment. This method was used to measure

methylation patterns in Egyptian barley grains (800 BCE

to 1812 CE) [43], and in extracts from soft and calcified

tissues of several samples including woolly mammoths,

polar bears, equids, and a human [39]. However, this

method was shown to be biased towards large fragments

and CpG-rich regions [39]. A key source of error when

short DNA fragments are treated by bisulfite is the

reduced alphabet of DNA, from ACGT to AGT, limiting

the accuracy of their alignment to the reference genome.

Recently, a modified bisulfite sequencing technique was

developed to circumvent this limitation [40,44]. In this

method, hairpin adapters are ligated to the ancient frag-

ments before the bisulfite treatment, keeping both

strands connected during sequencing, and thus allowing

for a direct identification of C ! T conversions and

avoiding the need to reduce the DNA alphabet.

An alternative to a direct measurement of DNA methyla-

tion is a computational approach that harnesses the fact the

deamination of ancient DNA works differently for meth-

ylated and unmethylated cytosines [17,45��]. Unlike the

direct approach, the computational technique provides

information at a regional, rather than at a single base-pair,

resolution. Using this approach, the methylomes of a paleo-

Eskimo [17], a Denisovan, two Neanderthals and five other
Figure 1
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AMHs were reconstructed [45��,46] (Figure 1). An initial

list of genes whose methylation differs between modern

and archaic humans, but is invariable across modern human

tissues, found that they are enriched with disease-related

genes, of which a third are associated with neurological and

psychiatric disorders [45��]. These genes were found to be

enriched in GWAS SNPs that are related to schizophrenia,

supporting the suggestion that schizophrenia is a by-prod-

uct of modern human evolution [47]. Using a large collec-

tion of modern and ancient bone samples, as well as

chimpanzee bones, nearly 3000 high-confident DMRs

separating the different human groups were found, repre-

senting methylation differences of at least 50% that span at

least 50 CpG positions. These DMRs are associated with

588 differentially methylated genes, where the methyla-

tion change occurred in modern humans after the split from

archaic humans. These genes were shown to be enriched in

genes affecting the face and voice box anatomy, suggesting

that voice box in modern humans is anatomically different

than that of Neanderthals and Denisovans [46]. These

results become even more significant when the 3D genome

organization was accounted for [48]. In the absence of HiC

maps for human bone, topologically associated domains

(TADs) were derived from consensus maps in three kar-

yotypically normal human cell lines, obtaining ‘consensus-

TADs’, which allowed to assign �70 additional DMRs to

their target genes [48] (Figure 2). The phenotypic
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tly its DNA methylation map could not be reconstructed accurately.

d using other samples [46].
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Body parts highlighted as potentially diverged between modern and

archaic humans [45–48].
information within the DMRs that separate the human

groups was shown to be sufficient to reconstruct the anat-

omy of the elusive Denisovan with �85% accuracy [49].

Conclusions
Evolutionary changes in gene regulation might underlie

many human-specific adaptations, but their study during

our very recent evolution is obstructed by the rarity of

ancient transcriptomics. Epigenetic marks may serve as a

proxy for gene activity patterns. As far as we know today,

ancient sequences preserve two such marks, nucleosome

position and DNA methylation. However, this is unlikely

to be a major hurdle, as different epigenetic layers carry

strongly overlapping information on gene activity [50].

Epigenetic marks are tissue-specific. Therefore, as of

today, reconstruction of DNA methylation mainly pro-

vided information on the skeletal system. Whereas

changes in this system are central to human evolution,

there is much interest in understanding the evolution of
www.sciencedirect.com 
other systems, such as the nervous system and the brain. A

method to identify bone DMRs that likely extend to

other tissues has been offered [38], but its validation

awaits future research.

Computational reconstruction of epigenetic marks bears a

great potential, yet is limited in different ways. Informa-

tion on nucleosome positions seems to be present in many

samples [17], yet to be absent in others, without a clear

understanding of the factors that lead to this variation

[51]. The reconstruction of DNA methylation requires

high-coverage shotgun sequencing, estimated in at least

�15, which is rare among ancient samples. However, it is

likely that pooling together of low-coverage shotgun

samples may offer some remedy to this limitation. More-

over, the reconstruction of ancient DNA methylation also

requires that the DNA libraries be prepared using UDG

treatment [52], which is not always practiced in ancient

DNA labs. Inferring the significance of a particular DMR

on gene expression or on specific phenotypes is challeng-

ing, as is the case for inferring the significance of genetic

variations. Usually, such inferences are carried out using

enrichment analyses, using simultaneous measurements

of expression and methylation, and using experiments on

specific loci [46].

As of today, only three methylation maps of archaic

humans have been reconstructed. As more high-coverage

archaic samples become available, it will ultimately allow

inter-population analysis in archaic humans. When con-

ducted on present-day human populations, such studies

demonstrated that DNA methylation mirrors genetics in

inter-population pattern of divergence [53,54].

Experimental techniques to measure DNA methylation

in ancient DNA are also limited. It would be interesting

to see whether the recent development of methylation-

sensitive long read sequencing tools that do not require

PCR-amplification and bisulfite conversion, for example,

Nanopore sequencing, may be useful to overcome some

of the current limitations.
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Removal of deaminated cytosines and detection of in vivo
methylation in ancient DNA. Nucleic Acids Res 2010, 38:e87
http://dx.doi.org/10.1093/nar/gkp1163.

53. Fraser HB, Lam LL, Neumann SM, Kobor MS: Population-
specificity of human DNA methylation. Genome Biol 2012, 13:R8.

54. Carja O, MacIsaac JL, Mah SM, Henn BM, Kobor MS,
Feldman MW, Fraser HB: Worldwide patterns of human
epigenetic variation. Nat Ecol Evol 2017, 1:1577-1583.
Current Opinion in Genetics & Development 2020, 62:23–29

http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0180
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0180
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0180
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0180
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0180
http://dx.doi.org/10.1002/ajpa.24041
http://dx.doi.org/10.1002/ajpa.24041
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0190
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0190
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0190
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0195
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0195
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0195
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0195
http://dx.doi.org/10.1093/molbev/msz231
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0205
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0205
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0205
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0210
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0210
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0210
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0210
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0215
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0215
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0215
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0215
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0220
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0220
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0220
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0220
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0225
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0225
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0225
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0225
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0230
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0230
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0230
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0230
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0230
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0235
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0235
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0235
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0235
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0240
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0240
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0240
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0240
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0245
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0245
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0245
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0245
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0250
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0250
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0250
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0250
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0255
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0255
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0255
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0255
http://dx.doi.org/10.1093/nar/gkp1163
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0265
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0265
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0270
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0270
http://refhub.elsevier.com/S0959-437X(20)30074-5/sbref0270

	Harnessing epigenetics to study human evolution
	Introduction
	Evolution of gene regulation through the lens of epigenetics
	Comparing DNA methylation between humans and other primates
	Comparing DNA methylation between modern and archaic humans
	Conclusions
	Conflict of interest statement
	References and recommended reading
	Acknowledgement


