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Editor’S cornEr Editor’S caornEr

The past few years have brought us an unprecedented amount of 
data, which continues to accumulate in an exponentially increas-
ing pace. Advances in high throughput methods, especially of 
deep sequencing technologies, allowed experimental biologists to 
move from analyzing responses in single genes or single path-
ways to the entire genome, be it at the genetic level (i.e., muta-
tions, single nucleotide polymorphisms), the epigenetic level 
(DNA methylation analyses, DNase I hypersensitivity maps, 
FAIRE, nucleosome positioning, chromatin modifications, his-
tone variants), the interactome (transcription factor binding, 
chromatin bound proteins, other trans-acting factors), the RNA 
level (transcriptome, RNome, ribosome profiling), or the three-
dimensional organization level of the genome (Chromosome 
Conformation Capture related technologies), and its long-range 
interactions (Fig. 1).

Embryonic stem cells (ESCs) serve as an excellent model sys-
tem for epigenetic studies as they undergo substantial morpho-
logical, structural and functional changes during the early stages 
of differentiation.2,3 Thus, the same genome gives rise to differ-
ent dynamic outputs in a relatively short timescale, allowing the 
study of the changes manifested by the epigenome. Indeed, DNA 
methylation4,5 and 5-hydroxy-methylation maps,6-9 chromatin 
state maps,10,11 DNase-I hypersensitivity maps,12,13 formaldehyde 
assisted isolation of regulatory elements (FAIRE),14 nucleosome 
positioning,15 transcription factor binding,16,17 transcriptome 
analyses of polyadenylated18,19 and non-polyadenylated20 RNA, 
and 3-dimentional organization21,22 just to name a few (!), have 
been generated extensively for ESCs, and these maps can serve 
not only as validation platforms (e.g., to find whether Pol-II 
is enriched on the promoter of your favorite/newly discovered 
gene), but also as discovery platforms. An elegant example for 
such an approach led to the discovery of long intergenic non-
coding (linc) RNAs.23 The authors used the chromatin signa-
ture (enrichment for H3K4me3 and H3K36me3) of typical 
spliced genes in the genome, and looked for similar patterns in 
un-annotated regions. Remarkably, they identified a large family 
of spliced and processed RNAs, most of which was previously 
unnoticed and unexplored, which lack protein coding potential. 
In follow up studies by the same group and now many others, 
the functional roles of numerous lincRNAs in ESC pluripotency 
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and differentiation24,25 as well as the integrity of chromatin struc-
ture26 was demonstrated.

In a somewhat similar approach, we sought to discover poten-
tial novel regulators of histone genes. To this end, we created a 
database of the currently existing genome-wide maps of transcrip-
tion factor binding and histone modifications in mouse ESCs, 
and looked for factors that are enriched at histone gene clusters. 
We were able to verify that E2f proteins regulate histone genes, 
although surprisingly, in contrast to the current view, which 
postulates that some of the histone genes are E2f-independent,27 
we found that essentially all histone genes are E2f-dependent, 
based on enrichment scores and microarray analysis. In addition, 
we were able to identify novel positive (e.g., Smad proteins) and 
negative (e.g., Zfx, Ctcf) regulators of histone gene expression, all 
of which were validated by previously published gene expression 
studies of relevant knockout cells.28

Such approaches demonstrate that we have reached the stage 
where sufficient genome-wide data has been generated, at least 
for ESCs, allowing for in silico experiments, which may lead to 
novel insights. Cross reference of different databases from mul-
tiple sources is self-correcting and unbiased, especially when per-
formed by third party laboratories. Such novel insights obtained 
by computational analyses still require experimental validation, 
but provide extremely useful “short-cuts”. For example, the 
ENCODE project included one human ESC line. For stem cell 
scientists this is not enough, but comparing the different data 
sets between the human ESC line and other cell lines used in 
the project may provide some novel insights, and importantly, 
help researchers plan their next experiments in a more focused 
manner. Not all predictions may prove correct, but they can no 
doubt save considerable time and effort. Especially pertinent are 
approaches that focus on specific categories within the genome, 
such as the example depicted above for histone gene regulation.

So should we now cease our ‘wet’ experiments and focus 
on analyzing data? Definitely not. Technologies are advancing 
at such a rapid pace that each data set that is currently being 
generated is slightly superior to previous data sets. Moreover, 
the field is driven forward by users of high throughout tech-
nologies, and if experimentalists turn analysts, technologies will 
soon dry up. But most importantly, we are still tremendously 
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far from reaching the point where new data generated is mostly, 
or at least partly, redundant. To advance forward efficiently, we 
must use the existing resources and data sets, milk them for 
insights, and plan the following experiments accordingly. We 
must therefore continue to generate new and better data, and 
strive to combine these data sets into databases of similar cell 
types or organisms.

Many examples now demonstrate the power of using exist-
ing data sets and combining them with newly generated ones. 
Platforms that combine all these data sets, allow the addition of 
data, and provide tools for analyses, are essential for the wider 
community. Two important ‘veteran’ tools, which are still the 

preferred choices by many biologists and analysts are Galaxy29 
and GenePattern,30 which were developed by teams from Penn 
State University and The Broad Institute, respectively. A recent 
platform with excellent visualization tools and friendly interface, 
which integrates most of the published data, is ‘GeneProf ’31, 
making it essentially accessible to anyone. A more recent interest-
ing attempt was made to create a platform—Spark—for biolo-
gists faced with large-scale computational challenges.32 Spark was 
able to identify known epigenetic signatures, but importantly, 
was also able to predict association between YY1 and CTBP2 in 
human ESCs, based on their genome-wide binding maps. Such 
tools make large-scale data sets accessible for the wide scientific 

Figure 1. Genomic and epigenomic layers (left) and the corresponding high-throughput sequencing-based approaches which are used to study 
them (right). (A) High throughput DNA sequencing (DNA-seq) is used to detect mutations in the primary DNA sequence as well as variations 
among individuals termed single nucleotide polymorphisms (SNPs). (B) Bisulfite-sequencing and Reduced Representation Bisulfite Sequencing 
(RRBS) rely on the bisulfite conversion of C to U and comparison of the non-treated to the treated sequence. These methods are used to map 
DNA methylation patterns. Additional methods (e.g., mDIP) employ antibodies that recognize methylated DNA (or 5-hydroxymethylated DNA), 
followed by high throughout sequencing. Histone modifications can also be mapped with specific antibodies using Chromatin Immunoprecipita-
tion (ChIP) followed by high throughput sequencing (ChIP-seq). DNase I hypersensitive maps, which are mostly found around regulatory regions 
are mapped using DNase I digestion of chromatin followed by deep sequencing (DHS-seq). FAIRE (Formaldehyde Assisted Isolation of Regula-
tory Elements) is a complementary approach enabling the detection of open chromatin regions that are suspected to contain regulatory elements. 
Finally, to identify the locations of nucleosomes at a genome-wide scale, chromatin can be digested to mono-nucleosomes using micrococcal 
nuclease (MNase) and sequenced (MNase-seq). (C) ChIP-seq is used to identify the genomic regions bound by transcription factors. In order to 
identify which factors are bound to a specific genomic region, proteomics of isolated chromatin segments (PICh) can be used, although it has 
so far been demonstrated successfully only for repetitive regions and requires ample amount of cells. (D) RNA sequencing (RNA-seq) allows 
studying the transcriptome of cells. While usually RNA-seq employs poly-adenylated RNA, experimental methods are available to enrich for other 
RNA species such as non-polyadenylated RNA and microRNA. For ribosomes profiling, ribosomes are first purified biochemically, and RNA is 
then subjected to high throughput sequencing. (E) To study the three-dimensional organization of the genome, distinct genomic regions that are 
in close proximity can be amplified together following fixation using specific primers, in a method called Chromosome Conformation Capture 
(3C). When one primer is used as ‘bait’ amplifying adjacent regions, and tiling arrays or high throughput sequencing are applied to detect all 
amplification products simultaneously, the method is referred to as Circular Chromosome Conformation Capture, or 4C. When two multiplex 
primers are used to amplify many multiplex PCR reactions the assay is called Carbon Copy Chromosome Conformation Capture, or 5C. When 
ChIP is performed to first pull-down specific genomic regions bound by a given protein (such as RNA polymerase II), the assay is referred to 
as ChIP-loop, or ChIA-PET, when using paired end-tag sequencing. Hi-C enables amplifying all genomic regions in close proximity without the 
requirement of specific baits.1
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community, allowing experimental labs with little computational 
knowhow to enter the genomic era.

A plethora of new knowledge is concealed beneath many 
layers of the already existing genome-wide data sets. The years 
to come will no doubt continue to provide us with increasing 
amounts of data. In the near future genome-wide data sets will 
not belong solely to the systems biologist’s realm, but will be an 
integral part of every experimental lab’s research. Therefore, the 
development of computational tools and platforms that will allow 
experimentalists to not only analyze but also integrate such data 
sets will be essential to fuel and expand the genomic revolution 
we are currently witnessing.
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